Preventing transcriptional gene silencing by active DNA demethylation.
نویسندگان
چکیده
DNA methylation is important for stable transcriptional gene silencing. DNA methyltransferases for de novo as well as maintenance methylation have been well characterized. However, enzymes responsible for active DNA demethylation have been elusive and several reported mechanisms of active demethylation have been controversial. There has been a critical need for genetic analysis in order to firmly establish an in vivo role for putative DNA demethylases. Mutations in the bifunctional DNA glycosylase/lyase ROS1 in Arabidopsis cause DNA hypermethylation and transcriptional silencing of specific genes. Recombinant ROS1 protein has DNA glycosylase/lyase activity on methylated but not unmethylated DNA substrates. Therefore, there is now strong genetic evidence supporting a base excision repair mechanism for active DNA demethylation. DNA demethylases may be critical factors for genome wide hypomethylation seen in cancers and possibly important for epigenetic reprogramming during somatic cell cloning and stem cell function.
منابع مشابه
Retraction: 'A pair of transposon-derived proteins regulate active DNA demethylation in Arabidopsis'.
DNA methylation and histone modifications are important epigenetic markers involved in transcriptional gene regulation in animals and plants. In Arabidopsis, IDM1 is a histone acetyltransferase that plays critical roles in preventing hypermethylation of DNA and transcriptional gene silencing, but the mechanism(s) by which IDM1 is targeted to specific genomic loci is still unclear. Here, we find...
متن کاملActive cytosine demethylation triggered by a nuclear receptor involves DNA strand breaks.
Cytosine methylation at CpG dinucleotides contributes to the epigenetic maintenance of gene silencing. Dynamic reprogramming of DNA methylation patterns is believed to play a key role during development and differentiation in vertebrates. The mechanisms of DNA demethylation remain unclear and controversial. Here, we present a detailed characterization of the demethylation of an endogenous gene ...
متن کاملThe methyl-CpG-binding protein MBD7 facilitates active DNA demethylation to limit DNA hyper-methylation and transcriptional gene silencing.
DNA methylation is a conserved epigenetic mark that plays important roles in plant and vertebrate development, genome stability, and gene regulation. Canonical Methyl-CpG-binding domain (MBD) proteins are important interpreters of DNA methylation that recognize methylated CG sites and recruit chromatin remodelers, histone deacetylases, and histone methyltransferases to repress transcription. He...
متن کاملRole of the Arabidopsis DNA glycosylase/lyase ROS1 in active DNA demethylation.
DNA methylation is a stable epigenetic mark for transcriptional gene silencing in diverse organisms including plants and many animals. In contrast to the well characterized mechanism of DNA methylation by methyltransferases, the mechanisms and function of active DNA demethylation have been controversial. Genetic evidence suggested that the DNA glycosylase domain-containing protein ROS1 of Arabi...
متن کاملRegulation of active DNA demethylation by an α-crystallin domain protein in Arabidopsis.
DNA methylation patterns are dynamically controlled by DNA methylation and active DNA demethylation, but the mechanisms of regulation of active DNA demethylation are not well understood. Through forward genetic screens for Arabidopsis mutants showing DNA hypermethylation at specific loci and increased silencing of reporter genes, we identified IDM2 (increased DNA methylation 2) as a regulator o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- FEBS letters
دوره 579 26 شماره
صفحات -
تاریخ انتشار 2005